Nitric oxide inhibits enterocyte migration through activation of RhoA-GTPase in a SHP-2-dependent manner.
نویسندگان
چکیده
Diseases of intestinal inflammation like necrotizing enterocolitis (NEC) are associated with impaired epithelial barrier integrity and the sustained release of intestinal nitric oxide (NO). NO modifies the cytoskeletal regulator RhoA-GTPase, suggesting that NO could affect barrier healing by inhibiting intestinal restitution. We now hypothesize that NO inhibits enterocyte migration through RhoA-GTPase and sought to determine the pathways involved. The induction of NEC was associated with increased enterocyte NO release and impaired migration of bromodeoxyuridine-labeled enterocytes from terminal ileal crypts to villus tips. In IEC-6 enterocytes, NO significantly inhibited enterocyte migration and activated RhoA-GTPase while increasing the formation of stress fibers. In parallel, exposure of IEC-6 cells to NO increased the phosphorylation of focal adhesion kinase (pFAK) and caused a striking increase in cell-matrix adhesiveness, suggesting a mechanism by which NO could impair enterocyte migration. NEC was associated with increased expression of pFAK in the terminal ileal mucosa of wild-type mice and a corresponding increase in disease severity compared with inducible NO synthase knockout mice, confirming the dependence of NO for FAK phosphorylation in vivo and its role in the pathogenesis of NEC. Strikingly, inhibition of the protein tyrosine phosphatase SHP-2 in IEC-6 cells prevented the activation of RhoA by NO, restored focal adhesions, and reversed the inhibitory effects of NO on enterocyte migration. These data indicate that NO impairs mucosal healing by inhibiting enterocyte migration through activation of RhoA in a SHP-2-dependent manner and support a possible role for SHP-2 as a therapeutic target in diseases of intestinal inflammation like NEC.
منابع مشابه
Nitric oxide-induced motility in aortic smooth muscle cells: role of protein tyrosine phosphatase SHP-2 and GTP-binding protein Rho.
We have previously reported that SHP-2 upregulation is necessary for NO-stimulated motility in differentiated rat aortic smooth muscle cells. We now test the hypothesis that upregulation of SHP-2 is necessary and sufficient to stimulate cell motility. Overexpression of SHP-2 via recombinant adenoviral vector stimulated motility to the same extent as NO, whereas the expression of C463S-SHP-2, th...
متن کاملNitric Oxide Enhances Keratinocyte Cell Migration by Regulating Rho GTPase via cGMP-PKG Signalling
OBJECTIVE Nitric oxide (NO) has been shown to improve wound healing, but the mechanism underlying this function is not well defined. Here, we explored the effect of NO on the migration of a human keratinocyte cell line (HaCaT) and its possible mechanism. METHODS The effects of NO on HaCaT cells in the presence of different concentrations of the NO donor sodium nitroprusside (SNP) were evaluat...
متن کاملSHP-2 positively regulates myogenesis by coupling to the Rho GTPase signaling pathway.
Myogenesis is an intricate process that coordinately engages multiple intracellular signaling cascades. The Rho family GTPase RhoA is known to promote myogenesis, however, the mechanisms controlling its regulation in myoblasts have yet to be fully elucidated. We show here that the SH2-containing protein tyrosine phosphatase, SHP-2, functions as an early modulator of myogenesis by regulating Rho...
متن کاملCyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle.
The potent vasodilator action of cyclic GMP-dependent protein kinase (cGK) involves decreasing the Ca(2+) sensitivity of contraction of smooth muscle via stimulation of myosin light chain phosphatase through unknown mechanisms (Wu, X., Somlyo, A. V., and Somlyo, A. P. (1996) Biochem. Biophys. Res. Commun. 220, 658-663). Myosin light chain phosphatase activity is controlled by the small GTPase R...
متن کاملErythropoietin stimulates cancer cell migration and activates RhoA protein through a mitogen-activated protein kinase/extracellular signal-regulated kinase-dependent mechanism.
Erythropoietin (Epo) receptor (EpoR) is expressed in several cancer cell lines, and the functional consequence of this expression is under extensive study. In this study, we used a cervical cancer cell line in which EpoR was first found to be expressed and to correlate with the severity of the disease. We demonstrate that Epo is a chemoattractant for these cancer cells, enhancing their migratio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 292 5 شماره
صفحات -
تاریخ انتشار 2007